

Nanolaminate Mirror Development at ATK-COI

Dr. Steve Connell

Mirror Tech Days August 18, 2004 Huntsville, AL

OUTLINE

- Objectives and Requirements
- Challenges with Composites in Mirror Design
- Design Development of Composite / Nanolaminate Hybrid
- Predicted Performance
- Prototype Fabrication and Test
 - » Figure
 - » Roughness
 - » Mass
- Conclusions and Recommendations

Objectives and Requirements

Objectives

- » Lightweight Mirrors for Large Aperture Space Telescopes
- » Replicated Nanolaminate Foil Serves as the Optical Surface
- » ATK-COI to Develop a Composite-Based Backing Structure to Support Nanolaminate Foil.

Considerations

- » Meets Requirements (See Table)
- » Ease of Manufacturing (Rapid, Low \$)
- » Assume no actuation

NRO-Funded Investigation

» \$100K / 9-month Effort

Attribute	Value	Units
Diameter	> 1	m
Areal Density	< 5	kg/m²
Surface Accuracy (P-V)	20	nm
Surface Roughness (RMS)	2	nm
Temperature Range	250 - 350	K

Development Tasks

Design

- » Mitigate Fiber and Core Element Print-Thru
- » Mitigate Moisture Deformation
- » Balanced and Symmetric for Thermal Stability
- » Meet 5 kg/m² Areal Density Goal Challenging!
- » Predict Performance via Simple Laminated Plate Theory

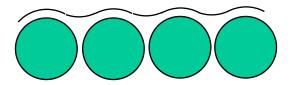
Process Development

- » Adhesive Selection
- » Nanolaminate Bonding Process

Demo Mirror Fabrication

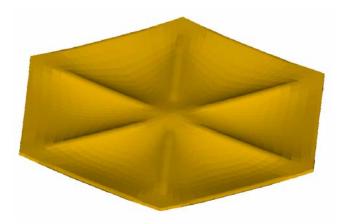
- » Two mirrors @ 2.5"
- » Final Deliverable @ ~10"

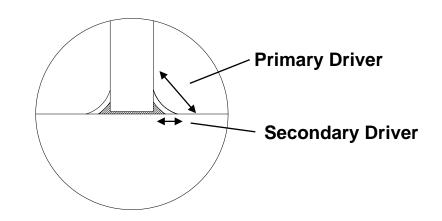
Mirror Evaluation

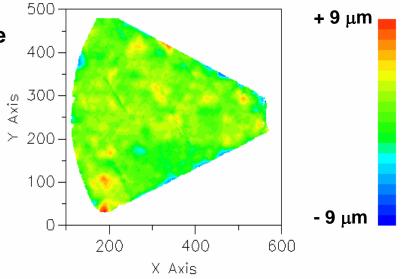

- » Figure simple Fizeau fringes
- » Roughness NASA/MSFC

Implementation Challenges with Composites

- 1) Micro-Level: Diffuse Surface Effects
 - » Fiber Print-Thru Limits Operational Wavelength
 - "Typical" Laminate Roughness ~ 100 nm RMS

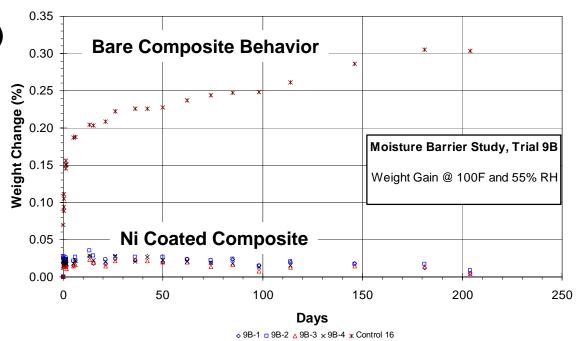

- » COI Developed Solution(s)
 - > Additional Adhesive Layer at Surface (Replicated)
 - Application of a Polishable Coating
 - > Application of a Metallic Coating for Diamond Turning
- » Nanolaminate Mirror Considerations
 - Nanolaminate Foil Can Potentially Mask Underlying Fibers


Implementation Challenges with Composites

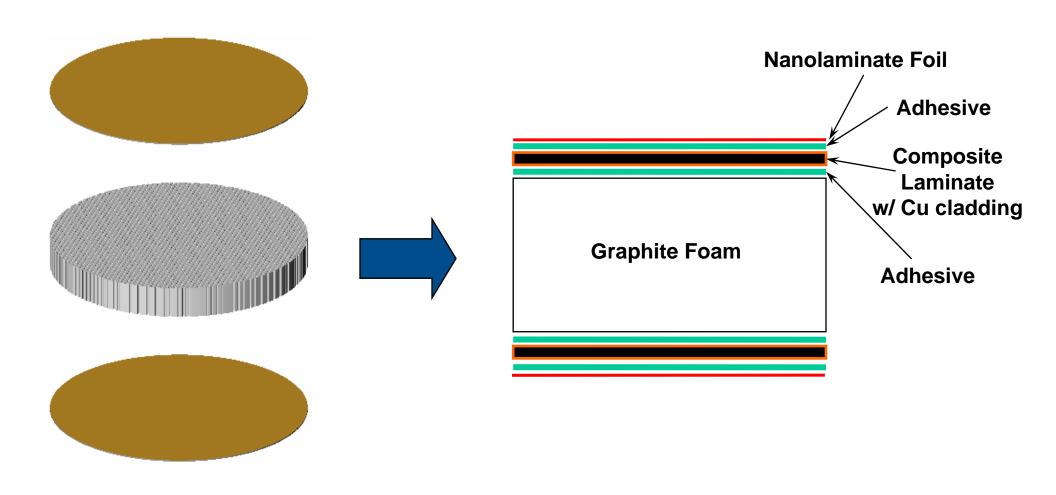


- 2) Macro Level: Bonded Construction Effects
 - » Rib Print-Thru affects Mirror Figure
 - » COI Heritage Solution(s)
 - > Null Figuring (lon)
 - Careful Adhesive Control
 - > Solid Core (Foam) Design Alternatives
 - » Nanolaminate Considerations
 - Difficult to Meet Figure w/ Discrete Rib Core

12" NMSD Hybrid Demo Mirror: Deformation from Bonding @ RT


FIRST Mirror Segment:
Quilting @ 70K

Implementation Challenges with Composites


- 3) Moisture Instability
 - » Moisture Expansion Can Be Dominant Error Source Greater Than Thermal Expansion Effects (Typical CME ~ 100 ppm/%M)
 - » COI Heritage Solution(s)
 - > Lower Moisture Uptake Resins
 - > Plate and/or Clad Composites
 - » Nanolaminate Consideration(s)
 - Recommend a Coating for CFRC

Composite / Nanolaminate Hybrid Mirror Design

Composite / Nanolaminate Hybrid Design Characteristics

SYMMETRIC / BALANCED STRUCTURE

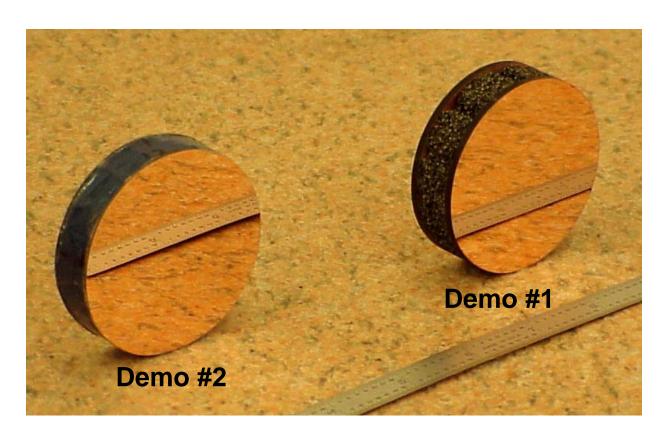
- » Mitigates unstabilizing effect of high CTE nanolaminate
- » Ensures curvature change (only) in a powered optic over temperature range
- » High CTE adhesives, and inherently anisotropic CFRC make even this approach challenging to meet $\lambda/20$ Requirement
- » Imperfections in balance/symmetry will lead to higher order errors

CONTINUOUS CORE

- » Discrete Rib Approach for Core Not Viewed as Capable of Meeting Figure/Stability Requirement
- » Primary function is to separate facesheets to achieve stiffness

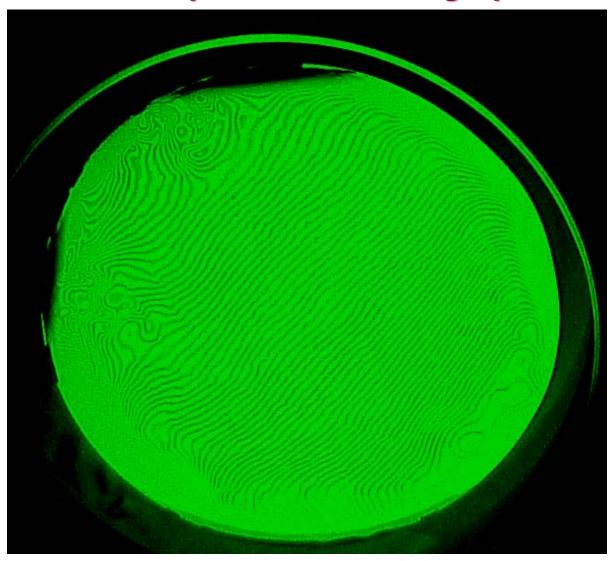
MASS CHALLENGE ACHIEVABLE

» 0.020" Thick CFRC Laminate = 1 kg/m²



Prototype Fabrication and Test

ATK 3 Mirrors Fabricated and Tested

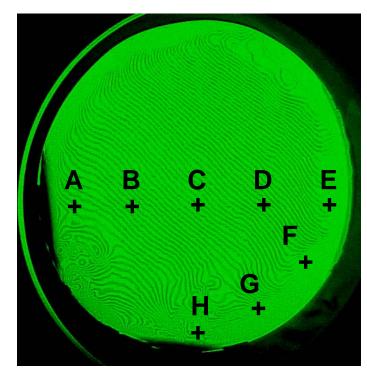


- Two small (2.5") manufacturing pathfinder / proof-of-concept mirrors
 - Figure evaluated with both optical flat and interferometer
 - Roughness measured with WYKO
- 9" FLAT as Final Deliverable
 - Central aperture (only) evaluated to-date
 - Complete figure evaluation in-work

Fringe Evaluation Optical Axis Facing Up

 Edge errors predominately due to damage (delamination of nanolaminate foil from substrate) sustained during de-molding operation

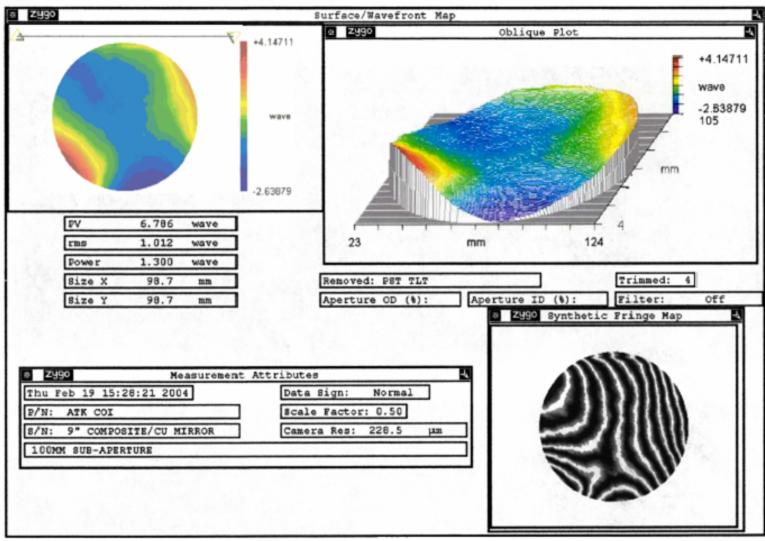
Interferometry


 Mirror supported vertically (resting at two points on edge, and one point on backside) during test

Roughness Measurements

- WYKO Interferometer
 - » 1 mm x 1 mm sample area
 - » 256 x 256 pixels
 - » ~5Å resolution, with ~1Å repeatability
- ~ 40 angstrom roughness across central aperture (vs. ~ 5 Å RMS mandrel roughness)
- Results indicate minor print-thru of fibers and/or fiber bundles to surface
- Higher edge readings associated with delamination of nano-foil from substrate (caused during de-molding)
- Similar readings made on all three demo substrates

Α	44	E	39
В	65	F	54
С	43	G	94
D	44	Н	76


All values in Å RMS

Final Deliverable (9" Flat)

15

- ZYGO interferometer used to capture the central ~4-inches of Mirror #3
- Mirror supported vertically (resting at two points on edge, and one point on backside)

Summary of Results

3 Mirrors Fabricated and Evaluated

	Mirror #1	Mirror #2	Mirror #3
Aperture	2.5"	2.5"	8.8"
Nanolaminate Configuration	One Side	Two Sides	Two Sides
Estimated Surface Figure	13 waves (Power)	0.8 wave	~1 – 5 waves
Surface Roughness	35 – 85 Å (includes edge values)	40 – 100 Å	45 – 90 Å
Comments	Figure Error due to Disbond of <i>faceskin</i> from core	Geometries and Approach refined	Final Deliverable

Conclusions & Recommendations

Demonstrated Feasibility of Meeting All Objectives, Except Figure

Attribute	Value	Units	Compliance Demonstrated
Diameter	> 1	m	Use of Scalable Materials & Processes
Areal Density	< 5	kg/m²	Demo #2 and Final 9" Mirror
Surface Accuracy (P-V)	20	nm	Non Compliant; HOWEVER NRO interests now include scenario for mirror actuation
Surface Roughness (RMS)	2	nm	Measurements to date suggest print-thru of fiber/bundle morphology to optical surface
Temperature Range	250 - 350	K	Balanced Design Ensures max. Stability with Temperature

- Following Efforts Recommended as Part of Continued Development:
 - » Mask/coat fiber print-thru

- » Improve Metrology / Feedback
- » Assembly Process Optimization
 - » Interface Properties
- » Improve laminate design/accuracy

17